M1.(a) <u>164.0</u>

Must be 1 decimal place

1

1

 (b) 17.1(%) (= 28.0 × 100 / Qa) Consequential on their (a) Ignore precision but must be to at least 2 sig fig. (i.e. accept 17 or 17.07)

(c)	(i)	<u>Absorption</u> depends on (proportional to) path length / distance travelled through solution	
		Do not allow size.	1
	(ii)	To select the colour / frequency / wavelength that is (most strongly)	

- absorbed (by the sample) Allow the filter is chosen to complement the colour of the solution
- (iii) Quicker to analyse extracted samples than by titration / uses smaller volumes of solution

1 [5]

1

M2.(a) $\Delta E = hv$

$$Allow = hf$$

$$v = \Delta E / h = 2.84 \times 10^{-19} / 6.63 \times 10^{-34} = 4.28 \times 10^{14} \text{ s}^{-1} / \text{Hz}$$

Allow 4.3 × 10¹⁴ s⁻¹ / Hz
Answer must be in the range:
4.28 - 4.30 × 10¹⁴

(b) (One colour of) light is absorbed (to excite the electron)

1

1

The remaining colour / frequency / wavelength / energy is transmitted (through the solution) Allow light reflected is the colour that we see. 1 (c) Bigger 1 Blue light would be absorbed **OR** light that has greater energy than red light would be absorbed **OR** higher frequency (of light absorbed / blue light) leads to higher ΔE Can only score M2 if M1 is correct. 1 (d) Any three from: (Identity of the) metal Charge (on the metal) / oxidation state / charge on complex (Identity of the) ligands Co-ordination number / number of ligands Shape 3 max [9] Orange dichromate Allow max 2 for three correct colours not identified to species but in correct order 1 Changes to purple / green / ruby / red-violet / violet Chromium(III) (Note green complex can be $[Cr(H_2O)_5Cl]^{2+}$ etc) Do not allow green with another colour 1

M3.(a)

That changes further to blue Chromium(II) Allow max 1 for two correct colours not identified but in correct order

1

	$[Cr_{2}O_{7}]^{2} + 14H^{*} + 3Zn \rightarrow 2Cr^{3*} + 3Zn^{2*} + 7H_{2}O$		
	$2Cr^{3*} + Zn \rightarrow 2Cr^{2*} + Zn^{2*} /$ Ignore any further reduction of Cr^{2*}		1
	$[Cr_2O_7]^2 + 14H^+ + 4Zn \rightarrow 2Cr^{2+} + 4Zn^{2+} + 7H_2O$ Ignore additional steps e.g. formation of Q	CrO₄²	1
(b)	Green precipitate		1
	(Dissolves to form a) green solution Solution can be implied if 'dissolves Istate	ed	1
	$[Cr(H_2O)_{6}]^{3*} + 3OH^{-} \rightarrow Cr(H_2O)_{3}(OH)_{3} + 3H_2O$ Penalise Cr(OH)_3 once only		1
	$Cr(H_2O)_3(OH)_3 + 3OH^- \rightarrow [Cr(OH)_6]^3 + 3H_2O$ $Allow [Cr(H_2O)_6]^{3*} + 6OH^- \rightarrow [Cr(OH)_6]^3 + 6$ $Allow formation of [Cr(H_2O)_2(OH)_4]^- and [Characterises balanced equations$ Ignore state symbols, mark independently	6H₂O Cr(H₂O)(OH)₅]²- in y	1

(c) (ligand) substitution / replacement / exchange Allow nucleophilic substitution

1

The energy levels/gaps of the <u>d</u> electrons are <u>different</u> (for each complex) Ignore any reference to emission of light

1

So a <u>different</u> wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected

1

1

1

1

1

(d) $E O_2 (/ H_2 O) > E Cr^{3+} (/ Cr^{2+}) / e.m.f = 1.67 V$ Allow E(cell) = 1.67

> So Cr^{2+} ions are oxidised by oxygen/air Allow any equation of the form: $Cr^{2+} + O_2 \rightarrow Cr^{3+}$

With [Cr(H₂O)₆]²⁺ get CrCO₃ If named must be chromium(II) carbonate

with $[Cr(H_2O)_6]^{3+}$ get $Cr(H_2O)_3(OH)_3$ / $Cr(OH)_3$ Allow 0 to 3 waters in the complex

and CO₂

Can score M3, M4, M5 in equations even if unbalanced

Cr(III) differs from Cr(II) because it is acidic / forms H⁺ ions

1

1

because Cr³⁺ ion polarises water

1

1

1

1

M4.(a)For reactions 1 to 3 must show complex ions as reactants and products Take care to look for possible identification on flow chart

Reaction 1

ammonia solution

W is [Co(NH₃)₀]²⁺

$$\begin{split} [\text{Co}(\text{H}_2\text{O})_6]^{2*} + 6\text{NH}_3 & \rightarrow [\text{Co}(\text{NH}_3)_6]^{2*} + 6\text{H}_2\text{O} \\ & \text{Correct equation scores all 3 marks} \end{split}$$

Reaction 2

Allow oxygen, Do not allow air

 H_2O_2

X is $[Co(NH_3)_6]^{3+}$

1

1

1

 $\begin{aligned} & 2[\text{Co}(\text{NH}_3)_6]^{2*} + \text{H}_2\text{O}_2 \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & \text{Allow } 2[\text{Co}(\text{NH}_3)_6]^{2*} + \frac{1}{2}\text{O}_2 + H_2\text{O} \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & \text{Correct equations score all 3 marks} \end{aligned}$

Reaction 3

Do not allow C⊦ but mark on

Y is [CoCl₄]²⁻

1

1

1

1

1

$[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_{\!\!6}]^{_{\!\!2^*}} + 4\operatorname{Cl}^{} \to [\operatorname{Co}\operatorname{Cl}_4]^{_{\!\!2^*}} + 6\operatorname{H}_2\operatorname{O}/$
Correct equation scores previous mark

 $[Co(H_2O)_6]^{2*} + 4HCI \rightarrow [CoCI_4]^{2*} + 6H_2O + 4H_4$ This equation scores all three marks

Reaction 4

Na₂CO₃ Or NaOH/NH₃ Do not allow CaCO₃ as a reagent but mark on

Z is CoCO₃ Co(OH)₂/Co(H₂O)₄(OH)₂

$$\begin{split} & [Co(H_2O)_6]^{2*} + CO_3^{2*} \rightarrow CoCO_3 + 6H_2O \quad & [Co(H_2O)_6]^{2*} + 2OH^- \rightarrow \\ & Co(H_2O)_4(OH)_2 + 2H_2O \text{ etc} \\ & \text{Allow waters to stay co-ordinated to Co. This mark also} \\ & \text{previous mark} \end{split}$$

Or $[Co(H_2O)_{\theta}]^{2*}$ + Na₂CO₃ \rightarrow CoCO₃ + 6H₂O + 2Na^{*} Allow Co^{2*} + CO₃^{2*} \rightarrow CoCO₃

1

1

(b) $SO_{3^{2^{*}}} + \frac{1}{2}O_{2} \rightarrow SO_{4^{2^{*}}}$ Allow multiples

PhysicsAndMathsTutor.com

 $\frac{1}{2}O_2 + 2Co^{2*} + 2H^* \rightarrow H_2O + 2Co^{3*}$

 $\begin{array}{l} 2Co^{_{3^{*}}}+SO_{_{3}^{2^{*}}}+H_{_{2}}O\rightarrow 2Co^{_{2^{*}}}+SO_{_{4}^{2^{*}}}+2H^{_{1}}\\ \\ \textit{Allow these equations in either order} \end{array}$

1

1

1